UDEMY 2021 - Advanced Machine Learning & Data Analysis Projects Bootcamp

0 138
advanced_machine_learning_data_analysis_projects_bootcamp-1.jpg | A&H Business Technology
Related posts

Build projects like a text summarizer! Learn object localization, image recognition and structuring data with pandas

You can find "Download Link" as a button at the end of this article.

What you’ll learn

  • Code in 3 programming languages: Java, Python and Swift
  • Build nodes and data models for linear regression
  • Build nodes and data models for linear regression

  • Use summarizing mechanisms to handle text data
  • Use summarizing mechanisms to handle text data

  • Test projects on mobile devices
  • Examine computational graphs
  • Analyze scalars and histograms
  • Build neuron functions
  • Load, convert, and display image and digit data
  • Describe data with statistics
  • And much more…
  • Requirements

  • PyCharm
  • Description

    Dive into a world of data science and analysis with a wide range of examples including the CIFAR 100 image dataset, Xcode development for Apple, Swift coding, CoreML, image recognition, and structuring data with pandas.

    This Mammoth Interactive course was funded by a #1 project on Kickstarter

    Learn Android Studio, Java, app development, Pycharm, Python coding, Tensforflow and more with Mammoth Interactive.

    Build advanced projects using machine learning including advanced the MNIST database with neuron functions. Build a text summarizer and learn object localization, object recognition and Tensorboard.

    Machine learning is a machine’s ability to make decisions or predictions based on previous exposure to data and extensive training. In other words, if a machine (program, app, etc.) improves its prediction accuracy through training then it has “learned”.

    Learn How Models Work

    Computational graphs consist of a network of connected nodes (often called neurons). Each of these nodes typically has a weight and a bias that helps determine, given an input, which path is the most likely.

    There are 4 main components to building a machine learning program: data gathering and formatting, model building, training, and testing and evaluating

    Data Gathering and Formatting

    You will learn to gather plenty of data for the model to learn from.

    All data should be formatted pretty much the same (images same size, same color scheme, etc.) and should be labelled. Also divide data into mutually exclusive training and testing sets.

    Model Building

    You will learn to figure out which kind of model scheme works best and what kinds of algorithms work best for the problem you’re trying to solve.

    Training, Testing and Evaluating

    The model can choose paths through the neural network or computational graph based upon the inputs for a particular run, as well as the weights and biases of neurons in the network.

    In supervised learning, we show the model what the correct outputs are for a given set of inputs and the model alters the weights and biases of neurons to minimize the difference between its output and the correct answer.

    Enroll Now to Learn with Mammoth Interactive

    Who is the target audience?

  • Topics involve intermediate math, so familiarity with university-level math is very helpful
  • Created by Mammoth Interactive, John BuraLast updated 6/2018EnglishEnglish [Auto-generated]

    Size: 14.12 GB

    Download File Here


    TinyURL for this post: https://tinyurl.com/y4txerpy

    You can view the useful tutorials which supports you to download files :
  • How to download torrent file
  • When GoogleDrive links is limited
  • Sorry, The Comment Form Is Temporarily Closed At This Time
    You may also like

    This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More