UDEMY 2021 - Unsupervised Deep Learning in Python

- 1. UDEMY 2021 - Fiverr: Start Freelancing & Become a Top Rated Fiverr Seller
- 2. UDEMY 2021 - How I Profit Selling Specific Items On Ebay
Theano / Tensorflow: Autoencoders, Restricted Boltzmann Machines, Deep Neural Networks, t-SNE and PCA
What you’ll learn
Know why PCA is useful for dimensionality reduction, visualization, de-correlation, and denoising
Derive the PCA algorithm by hand
Requirements
Description
In these course we’ll start with some very basic stuff – principal components analysis (PCA), and a popular nonlinear dimensionality reduction technique known as t-SNE (t-distributed stochastic neighbor embedding).
Next, we’ll look at a special type of unsupervised neural network called the autoencoder. After describing how an autoencoder works, I’ll show you how you can link a bunch of them together to form a deep stack of autoencoders, that leads to better performance of a supervised deep neural network. Autoencoders are like a non-linear form of PCA.
Last, we’ll look at restricted Boltzmann machines (RBMs). These are yet another popular unsupervised neural network, that you can use in the same way as autoencoders to pretrain your supervised deep neural network. I’ll show you an interesting way of training restricted Boltzmann machines, known as Gibbs sampling, a special case of Markov Chain Monte Carlo, and I’ll demonstrate how even though this method is only a rough approximation, it still ends up reducing other cost functions, such as the one used for autoencoders. This method is also known as Contrastive Divergence or CD-k. As in physical systems, we define a concept called free energy and attempt to minimize this quantity.
Finally, we’ll bring all these concepts together and I’ll show you visually what happens when you use PCA and t-SNE on the features that the autoencoders and RBMs have learned, and we’ll see that even without labels the results suggest that a pattern has been found.
All the materials used in this course are FREE. Since this course is the 4th in the deep learning series, I will assume you already know calculus, linear algebra, and Python coding. You’ll want to install Numpy, Theano, and Tensorflow for this course. These are essential items in your data analyticstoolbox.
If you are interested in deep learning and you want to learn about modern deep learning developments beyond just plain backpropagation, including using unsupervised neural networks to interpret what features can be automatically and hierarchically learned in a deep learning system, this course is for you.
This course focuses on “how to build and understand“, not just “how to use”. Anyone can learn to use an API in 15 minutes after reading some documentation. It’s not about “remembering facts”, it’s about “seeing for yourself” via experimentation. It will teach you how to visualize what’s happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE:
TIPS (for getting through the course):
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:
Who this course is for:
Created by Lazy Programmer Inc.Last updated 10/2018EnglishEnglish [Auto-generated]
Size: 2.85 GB
https://www.udemy.com/unsupervised-deep-learning-in-python/.